An efficient edge/cloud medical system for rapid detection of level of consciousness in emergency medicine based on explainable machine learning models

Author:

El-Rashidy Nora,Sedik Ahmed,Siam Ali I.,Ali Zainab H.

Abstract

AbstractEmergency medicine (EM) is one of the attractive research fields in which researchers investigate their efforts to diagnose and treat unforeseen illnesses or injuries. There are many tests and observations are involved in EM. Detection of the level of consciousness is one of these observations, which can be detected using several methods. Among these methods, the automatic estimation of the Glasgow coma scale (GCS) is studied in this paper. The GCS is a medical score used to describe a patient’s level of consciousness. This type of scoring system requires medical examination that may not be available with the shortage of the medical expert. Therefore, the automatic medical calculation for a patient’s level of consciousness is highly needed. Artificial intelligence has been deployed in several applications and appears to have a high performance regarding providing automatic solutions. The main objective of this work is to introduce the edge/cloud system to improve the efficiency of the consciousness measurement through efficient local data processing. Moreover, an efficient machine learning (ML) model to predict the level of consciousness of a certain patient based on the patient’s demographic, vital signs, and laboratory tests is proposed, as well as maintaining the explainability issue using Shapley additive explanations (SHAP) that provides natural language explanation in a form that helps the medical expert to understand the final prediction. The developed ML model is validated using vital signs and laboratory tests extracted from the MIMIC III dataset, and it achieves superior performance (mean absolute error (MAE) = 0.269, mean square error (MSE) = 0.625, R2 score = 0.964). The resulting model is accurate, medically intuitive, and trustworthy.

Funder

Kafr El Shiekh University

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3