Residential Electricity Load Scenario Prediction Based on Transferable Flow Generation Model
Author:
Funder
Natural Science Foundation of Jilin Province
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering
Link
https://link.springer.com/content/pdf/10.1007/s42835-022-01172-6.pdf
Reference23 articles.
1. Tang X, Chen H, Xiang W et al (2022) Short-term load forecasting using channel and temporal attention based temporal convolutional network. Electr Power Syst Res 205:107761–107774
2. Kwon BS, Park RJ, Song KB (2020) Short-term load forecasting based on deep neural networks using LSTM layer. J. Electr. Eng. Technol 15:1501–1509
3. Ahmad A, Javaid N, Guizani M, Alrajeh N, Khan ZA (2017) An accurate and fast converging short-term load forecasting model for industrial applications in a smart grid. IEEE Trans Ind Inform 13(5):2587–2596
4. Hippert HS, Pedreira CE, Souza RC (2001) Neural networks for short-term load forecasting: a review and evaluation. IEEE Trans Power Syst 16(1):44–55
5. Jufri FH, Oh S, Jung J (2019) Day-ahead system marginal price forecasting using artificial neural network and similar-days information. J Electr Eng Technol 14:561–568
Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Chance-Constrained optimal scheduling of power and hydrogen systems in power distribution network with significant photovoltaic and carbon offsetting strategies;Sustainable Cities and Society;2024-08
2. Modeling Residential Energy Consumption Patterns with Machine Learning Methods Based on a Case Study in Brazil;Mathematics;2024-06-25
3. Comparative assessment of generative models for transformer- and consumer-level load profiles generation;Sustainable Energy, Grids and Networks;2024-06
4. Synergistic two-stage optimization for multi-objective energy management strategy of integrated photovoltaic-storage charging stations;Journal of Energy Storage;2024-06
5. Forecasting Electricity Consumption in Five Regions of Dhaka City: A Comparative Assessment among various ML-Boosting Models;2024 6th International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT);2024-05-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3