Abstract
AbstractIn this paper we explore convex reformulation strategies for non-convex quadratically constrained optimization problems (QCQPs). First we investigate such reformulations using Pataki’s rank theorem iteratively. We show that the result can be used in conjunction with conic optimization duality in order to obtain a geometric condition for the S-procedure to be exact. Based upon known results on the S-procedure, this approach allows for some insight into the geometry of the joint numerical range of the quadratic forms. Then we investigate a reformulation strategy introduced in recent literature for bilinear optimization problems which is based on adjustable robust optimization theory. We show that, via a similar strategy, one can leverage exact reformulation results of QCQPs in order to derive lower bounds for more complicated quadratic optimization problems. Finally, we investigate the use of reformulation strategies in order to derive characterizations of set-copositive matrix cones. Empirical evidence based upon first numerical experiments shows encouraging results.
Funder
Fonds zur Förderung der wissenschaftlichen Forschung
Publisher
Springer Science and Business Media LLC
Subject
Management Science and Operations Research,General Mathematics,Software
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献