Sparse conic reformulation of structured QCQPs based on copositive optimization with applications in stochastic optimization

Author:

Gabl MarkusORCID

Abstract

AbstractRecently, Bomze et al. introduced a sparse conic relaxation of the scenario problem of a two stage stochastic version of the standard quadratic optimization problem. When compared numerically to Burer’s classical reformulation, the authors showed that there seems to be almost no difference in terms of solution quality, whereas the solution time can differ by orders of magnitudes. While the authors did find a very limited special case, for which Burer’s reformulation and their relaxation are equivalent, no satisfying explanation for the high quality of their bound was given. This article aims at shedding more light on this phenomenon and give a more thorough theoretical account of its inner workings. We argue that the quality of the outer approximation cannot be explained by traditional results on sparse conic relaxations based on positive semidenifnite or completely positive matrix completion, which require certain sparsity patterns characterized by chordal and block clique graphs respectively, and put certain restrictions on the type of conic constraint they seek to sparsify. In an effort to develop an alternative approach, we will provide a new type of convex reformulation of a large class of stochastic quadratically constrained quadratic optimization problems that is similar to Burer’s reformulation, but lifts the variables into a comparatively lower dimensional space. The reformulation rests on a generalization of the set-completely positive matrix cone. This cone can then be approximated via inner and outer approximations in order to obtain upper and lower bounds, which potentially close the optimality gap, and hence can give a certificate of exactness for these sparse reformulations outside of traditional, known sufficient conditions. Finally, we provide some numerical experiments, where we asses the quality of the inner and outer approximations, thereby showing that the approximations may indeed close the optimality gap in interesting cases.

Funder

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Management Science and Operations Research,Control and Optimization,Computer Science Applications,Business, Management and Accounting (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3