Abrasive Wear Behavior of Nano-Sized Steel Scale on Soft CuZn35Ni2 Material

Author:

Demirsoz Recep,Uğur Abdullah,Erdoğdu Ahmet Emrah,Korkmaz Mehmet Erdi,Gupta Munish KumarORCID

Abstract

AbstractThis study examines the abrasive wear behavior of nano-sized steel scale on the CuZn35Ni2 Soft material. CuZn35Ni2 Soft material was used as a sample, and the three-body wear mechanism formed by nanoscale particles mixed with lubricating oil was investigated using a ball-on-flat tester. Three different loads, three different sliding speeds and three different environment variables were used in the experiments. A lubricant containing 0.15 and 0.3 wt.% nanoscale and a non-abrasive lubricant was used to form the medium. The experimental results were obtained as mass loss, wear depth and friction coefficient and the wear surfaces were examined using scanning electron microscopy/energy-dispersive x-ray spectroscopy (SEM/EDX). The analysis of variance method was used to determine the effect of independent variables on the results. As a result of the study, it was concluded that the most effective parameter for mass loss and CoF was the environment, and the most effective parameter for the depth of wear was the load. It was concluded that there might be a difference of up to 10% in the coefficient of friction between the experiments and the predicted values. Still, in general, the predicted values and the experimental results agree.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3