Machine learning models for online detection of wear and friction behaviour of biomedical graded stainless steel 316L under lubricating conditions

Author:

Korkmaz Mehmet Erdi,Gupta Munish KumarORCID,Singh Gurminder,Kuntoğlu Mustafa,Patange AbhishekORCID,Demirsoz Recep,Ross Nimel SwornaORCID,Prasad Brijesh

Abstract

AbstractParticularly in sectors where mechanisation is increasing, there has been persistent effort to maximise the use of existing assets. Since maintenance management is accountable for the accessibility of assets, it stands to acquire prominence in this setting. One of the most common methods for keeping equipment in good working order is predictive maintenance with machine learning methods. Failures can be spotted before they cause any downtime or extra expenses, and with this aim, the present work deals with the online detection of wear and friction characteristics of stainless steel 316L under lubricating conditions with machine learning models. Wear rate and friction forces were taken into account as reaction parameters, and biomedical-graded stainless steel 316L was chosen as the work material. With more testing, the J48 method’s accuracy improves to 100% in low wear conditions and 99.27% in heavy wear situations. In addition, the graphic showed the accuracy values for several models. The J48 model is the most precise amongst all others, with a value of 100% (minimum wear) and an average of 98.92% (higher wear). Amongst all the models tested under varying machining conditions, the J48’s 98.92% (low wear) and 98.92% (high wear) recall scores stand out as very impressive (higher wear). In terms of F1-score, J48 performs better than any competing model at 99.45% (low wear) and 98.92% (higher wear). As a result, the J48 improves the model’s overall performance.

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3