On the Short-Term Creep and Recovery Behaviors of Injection Molded and Additive-Manufactured Tough Polylactic Acid Polymer

Author:

Gebrehiwot Silas Z.ORCID,Espinosa-Leal Leonardo,Andersson Mirja,Remes Heikki

Abstract

AbstractThe creep and recovery behaviors of a tough polylactic acid polymer are investigated experimentally and theoretically. We studied the influence of manufacturing methods and parameters on the viscoelastic responses. Experimental comparisons were carried out on 13 different samples manufactured using fused deposition modeling (FDM) and injection molding methods. The sample variations in the FDM were based on four infill densities (70-100%) and 3 infill directions $$(0^\circ ,45^\circ ,90^\circ )$$ ( 0 , 45 , 90 ) . Theoretically, the Burgers and Weibull’s models are used to predict the creep and recovery responses of the samples. Our experimental findings suggest that the injection-molded samples perform better in creep for most of the cases. However, at higher stress loadings, the 90 and 100% infill density samples showed excellent creep resistance behaviors at the $$90^\circ$$ 90 infill direction. On the other hand, the theoretical creep and recovery predictions were based on the nonlinear least-squares regression method. The Burgers model predicted the creep responses with reasonable accuracies. A maximum of $$5.83\%$$ 5.83 % mean absolute percentage error (MAPE) was found for the 0° infill direction and 80% infill density sample. On the contrary, the model lacks accuracy in recovery strain predictions, showing an average of 173.15% MAPE for all studied samples. Introducing Weibull’s distribution improved the accuracies showing a 3.44% average MAPE for all samples.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3