Optimising the mechanical properties of additive-manufactured recycled polylactic acid (rPLA) using single and multi-response analyses methods

Author:

Gebrehiwot Silas Z.ORCID,Espinosa-Leal Leonardo,Linderbäck Paula,Remes Heikki

Abstract

AbstractTaguchi’s design of experiment (DoE) and the grey relational analysis are used to optimise fused filament fabrication (FFF) parameters for the tensile strength and modulus of toughness (MoT) responses of a recycled polylactic acid (Reform-rPLA). The paper investigates the influences of the infill geometry, infill density, infill orientation, nozzle temperature and infill speed on the mechanical properties using the $${L}_{18}$$ L 18 orthogonal array that is based on the $${2}^{1}\times {4}^{3}$$ 2 1 × 4 3 factor levels and 3 experimental repetitions. The output responses are first studied individually and combined as a multi-response optimisation using the grey relational analysis method. In the strength optimisation, the infill orientation and infill density are statistically significant with P-values $$\alpha$$ α less than the 0.05 criterion. Similarly, the analysis of variance (ANOVA) for the MoT showed that infill orientation and infill geometry are statistically significant. For the multi-response optimisation, only the infill orientation is statistically significant. The mean response analyses identified factor levels that led to optimum strength and MoT responses. The confirmation tests are in good agreement with the response predictions. Using the first three influential factors, multiple variable linear regression models were developed. The predictive models showed average errors of $$7.91\%$$ 7.91 % for the tensile strength and $$8.6\%$$ 8.6 % for the MoT.

Funder

Fonden för teknisk utbildning och forskning

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3