Micromechanical Fields Associated with Irregular Deformation Twins in Magnesium

Author:

Leu Brandon,Kumar M. Arul,Rottmann Paul F.,Hemker Kevin J.,Beyerlein Irene J.

Abstract

AbstractUnderstanding and controlling the development of deformation twins is paramount for engineering strong and stable hexagonal close-packed (HCP) Mg alloys. Actual twins are often irregular in boundary morphology and twin crystallography, deviating from the classical picture commonly used in theory and simulation. In this work, the elastic strains and stresses around irregular twins are examined both experimentally and computationally to gain insight into how twins develop and the microstructural features that influence their development. A nanoprecession electron diffraction (N-PED) technique is used to measure the elastic strains within and around a $$\left\{ {10\overline{1}2} \right\}$$ 10 1 ¯ 2 tensile twin in AZ31B Mg alloy with nm scale resolution. A full-field elasto-viscoplastic fast Fourier transform (EVP-FFT) crystal plasticity model of the same sub-grain and irregular twin structure is employed to understand and interpret the measured elastic strain fields. The calculations predict spatially resolved elastic strain fields in good agreement with the measurement, as well as all the stress components and the dislocation density fields generated by the twin, which are not easily obtainable from the experiment. The model calculations find that neighboring twins, several twin thicknesses apart, have little influence on the twin-tip micromechanical fields. Furthermore, this work reveals that irregularity in the twin-tip shape has a negligible effect on the development of the elastic strains around and inside the twin. Importantly, the major contributor to these micromechanical fields is the alignment of the twinning shear direction with the twin boundary.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3