The Effect of Building Direction on Microstructure and Microhardness during Selective Laser Melting of Ti6Al4V Titanium Alloy

Author:

Palmeri D.,Buffa G.,Pollara G.,Fratini L.

Abstract

AbstractDuring the last few years, additive manufacturing has been more and more extensively used in several industries, especially in the aerospace and medical device fields, to produce Ti6Al4V titanium alloy parts. During the Selective Laser Melting (SLM) process, the heterogeneity of finished product is strictly connected to the scan strategies and the building direction. An optimal managing of the latter parameters allows to better control and defines the final mechanical and metallurgical properties of parts. Acting on the building direction it is also possible to optimize the critical support structure. In particular, more support structures are needed for the sample at 0°, while very low support are required for the sample at 90°. To study the effects of build direction on microstructure heterogeneity evolution and mechanical performances of selective laser melted Ti6Al4V parts, two build direction samples (0°, 90°) were manufactured and analyzed using optical metallographic microscope (OM) and scanning electron microscopy (SEM). Isometric microstructure reconstruction and microhardness tests were carried out in order to analyze the specimens. The obtained results indicate that the build direction has to be considered a key geometrical parameter affecting the overall quality of the obtained products.

Funder

Università degli Studi di Palermo

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3