Amplitude estimation without phase estimation
-
Published:2020-01-09
Issue:2
Volume:19
Page:
-
ISSN:1570-0755
-
Container-title:Quantum Information Processing
-
language:en
-
Short-container-title:Quantum Inf Process
Author:
Suzuki Yohichi, Uno Shumpei, Raymond Rudy, Tanaka Tomoki, Onodera Tamiya, Yamamoto NaokiORCID
Abstract
AbstractThis paper focuses on the quantum amplitude estimation algorithm, which is a core subroutine in quantum computation for various applications. The conventional approach for amplitude estimation is to use the phase estimation algorithm, which consists of many controlled amplification operations followed by a quantum Fourier transform. However, the whole procedure is hard to implement with current and near-term quantum computers. In this paper, we propose a quantum amplitude estimation algorithm without the use of expensive controlled operations; the key idea is to utilize the maximum likelihood estimation based on the combined measurement data produced from quantum circuits with different numbers of amplitude amplification operations. Numerical simulations we conducted demonstrate that our algorithm asymptotically achieves nearly the optimal quantum speedup with a reasonable circuit length.
Funder
Ministry of Education, Culture, Sports, Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Modelling and Simulation,Signal Processing,Theoretical Computer Science,Statistical and Nonlinear Physics,Electronic, Optical and Magnetic Materials
Reference31 articles.
1. IBM Q Experience: https://quantumexperience.ng.bluemix.net/qx/editor (2019). Accessed 26 Mar 2019 2. Friis, N., Marty, O., Maier, C., Hempel, C., Holzäpfel, M., Jurcevic, P., Plenio, M.B., Huber, M., Roos, C., Blatt, R., Lanyon, B.: Observation of entangled states of a fully controlled 20-qubit system. Phys. Rev. X 8, 021012 (2018) 3. Song, C., Xu, K., Liu, W., Yang, Cp, Zheng, S.B., Deng, H., Xie, Q., Huang, K., Guo, Q., Zhang, L., Zhang, P., Xu, D., Zheng, D., Zhu, X., Wang, H., Chen, Y.A., Lu, C.Y., Han, S., Pan, J.W.: 10-qubit entanglement and parallel logic operations with a superconducting circuit. Phys. Rev. Lett. 119, 180511 (2017) 4. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018) 5. McClean, J.R., Romero, J., Babbush, R., Aspuru-Guzik, A.: The theory of variational hybrid quantum-classical algorithms. New J. Phys. 18, 023023 (2016)
Cited by
117 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|