Quantum-enhanced mean value estimation via adaptive measurement

Author:

Wada Kaito1,Fukuchi Kazuma1,Yamamoto Naoki12

Affiliation:

1. Department of Applied Physics and Physico-Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan

2. Quantum Computing Center, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan

Abstract

Quantum-enhanced (i.e., higher performance by quantum effects than any classical methods) mean value estimation of observables is a fundamental task in various quantum technologies; in particular, it is an essential subroutine in quantum computing algorithms. Notably, the quantum estimation theory identifies the ultimate precision of such an estimator, which is referred to as the quantum Cramér-Rao (QCR) lower bound or equivalently the inverse of the quantum Fisher information. Because the estimation precision directly determines the performance of those quantum technological systems, it is highly demanded to develop a generic and practically implementable estimation method that achieves the QCR bound. Under imperfect conditions, however, such an ultimate and implementable estimator for quantum mean values has not been developed. In this paper, we propose a quantum-enhanced mean value estimation method in a depolarizing noisy environment that asymptotically achieves the QCR bound in the limit of a large number of qubits. To approach the QCR bound in a practical setting, the method adaptively optimizes the amplitude amplification and a specific measurement that can be implemented without any knowledge of state preparation. We provide a rigorous analysis for the statistical properties of the proposed adaptive estimator such as consistency and asymptotic normality. Furthermore, several numerical simulations are provided to demonstrate the effectiveness of the method, particularly showing that the estimator needs only a modest number of measurements to almost saturate the QCR bound.

Funder

JST

MEXT

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3