Abstract
AbstractThere are quantum algorithms for finding a function f satisfying a set of conditions, such as solving partial differential equations, and these achieve exponential quantum speedup compared to existing classical methods, especially when the number d of the variables of f is large. In general, however, these algorithms output the quantum state which encodes f in the amplitudes, and reading out the values of f as classical data from such a state can be so time-consuming that the quantum speedup is ruined. In this study, we propose a general method for this function readout task. Based on the function approximation by a combination of tensor network and orthogonal function expansion, we present a quantum circuit and its optimization procedure to obtain an approximating function of f that has a polynomial number of degrees of freedom with respect to d and is efficiently evaluable on a classical computer. We also conducted a numerical experiment to approximate a finance-motivated function to demonstrate that our method works.
Funder
Japan Society for the Promotion of Science
Precursory Research for Embryonic Science and Technology
Ministry of Education, Culture, Sports, Science and Technology
Co-creation place formation support program
Hyogo Prefecture
Kobe City
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Modeling and Simulation,Signal Processing,Theoretical Computer Science,Statistical and Nonlinear Physics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献