Quantum model prediction for frequency regulation of novel power systems which includes a high proportion of energy storage

Author:

Luo Wenbo,Xu Yufan,Du Wanlin,Wang Shilong,Fan Ziwei

Abstract

As the proportion of renewable energy generation continues to increase, the participation of new energy stations with high-proportion energy storage in power system frequency regulation is of significant importance for stable and secure operation of the new power system. To address this issue, an energy storage control method based on quantum walks and model predictive control (MPC) has been proposed. First, historical frequency deviation signals and energy storage charge–discharge state signals are collected. Simulation data are generated through amplitude encoding and quantum walks, followed by quantum decoding. Subsequently, the decoded data are inputted into the MPC framework for real-time control, with parameters of the predictive model continuously adjusted through a feedback loop. Finally, a novel power system frequency regulation model with high-proportion new energy storage stations is constructed on the MATLAB/Simulink platform. Simulation verification is conducted with the proportional–integral–derivative (PID) and MPC methods as comparative approaches. Simulation results under step disturbances and random disturbances demonstrate that the proposed method exhibits stronger robustness and better control accuracy.

Publisher

Frontiers Media SA

Reference32 articles.

1. Review on energy storage systems control methods in microgrids;Arani;Int. J. Electr. power and energy Syst.,2019

2. Optimized cascaded controller for frequency stabilization of marine microgrid system;Daraz;Appl. Energy,2023

3. An initialization-free distributed algorithm for dynamic economic dispatch problems in microgrid: modeling, optimization and analysis;Duan;Sustain. Energy, Grids Netw.,2023

4. Optimal power distribution control in modular power architecture using hydraulic free piston engines;Fei;Appl. Energy,2024

5. Provision of additional inertia support for a power system network using battery energy storage system;Folly,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3