One-Shot Randomized and Nonrandomized Partial Decoupling

Author:

Wakakuwa EyuriORCID,Nakata Yoshifumi

Abstract

AbstractWe introduce a task that we call partial decoupling, in which a bipartite quantum state is transformed by a unitary operation on one of the two subsystems and then is subject to the action of a quantum channel. We assume that the subsystem is decomposed into a direct-sum-product form, which often appears in the context of quantum information theory. The unitary is chosen at random from the set of unitaries having a simple form under the decomposition. The goal of the task is to make the final state, for typical choices of the unitary, close to the averaged final state over the unitaries. We consider a one-shot scenario, and derive upper and lower bounds on the average distance between the two states. The bounds are represented simply in terms of smooth conditional entropies of quantum states involving the initial state, the channel and the decomposition. Thereby we provide generalizations of the one-shot decoupling theorem. The obtained result would lead to further development of the decoupling approaches in quantum information theory and fundamental physics.

Funder

Core Research for Evolutional Science and Technology

Precursory Research for Embryonic Science and Technology

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3