A Sharp Version of Price’s Law for Wave Decay on Asymptotically Flat Spacetimes

Author:

Hintz PeterORCID

Abstract

AbstractWe prove Price’s law with an explicit leading order term for solutions $$\phi (t,x)$$ ϕ ( t , x ) of the scalar wave equation on a class of stationary asymptotically flat $$(3+1)$$ ( 3 + 1 ) -dimensional spacetimes including subextremal Kerr black holes. Our precise asymptotics in the full forward causal cone imply in particular that $$\phi (t,x)=c t^{-3}+{\mathcal {O}}(t^{-4+})$$ ϕ ( t , x ) = c t - 3 + O ( t - 4 + ) for bounded |x|, where $$c\in {\mathbb {C}}$$ c C is an explicit constant. This decay also holds along the event horizon on Kerr spacetimes and thus renders a result by Luk–Sbierski on the linear scalar instability of the Cauchy horizon unconditional. We moreover prove inverse quadratic decay of the radiation field, with explicit leading order term. We establish analogous results for scattering by stationary potentials with inverse cubic spatial decay. On the Schwarzschild spacetime, we prove pointwise $$t^{-2 l-3}$$ t - 2 l - 3 decay for waves with angular frequency at least l, and $$t^{-2 l-4}$$ t - 2 l - 4 decay for waves which are in addition initially static. This definitively settles Price’s law for linear scalar waves in full generality. The heart of the proof is the analysis of the resolvent at low energies. Rather than constructing its Schwartz kernel explicitly, we proceed more directly using the geometric microlocal approach to the limiting absorption principle pioneered by Melrose and recently extended to the zero energy limit by Vasy.

Funder

National Science Foundation

Clay Mathematics Institute

Alfred P. Sloan Foundation

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3