Author:
Haferkamp J.,Montealegre-Mora F.,Heinrich M.,Eisert J.,Gross D.,Roth I.
Abstract
AbstractMany quantum information protocols require the implementation of random unitaries. Because it takes exponential resources to produce Haar-random unitaries drawn from the full n-qubit group, one often resorts to t-designs. Unitary t-designs mimic the Haar-measure up to t-th moments. It is known that Clifford operations can implement at most 3-designs. In this work, we quantify the non-Clifford resources required to break this barrier. We find that it suffices to inject $$O(t^{4}\log ^{2}(t)\log (1/\varepsilon ))$$
O
(
t
4
log
2
(
t
)
log
(
1
/
ε
)
)
many non-Clifford gates into a polynomial-depth random Clifford circuit to obtain an $$\varepsilon $$
ε
-approximate t-design. Strikingly, the number of non-Clifford gates required is independent of the system size – asymptotically, the density of non-Clifford gates is allowed to tend to zero. We also derive novel bounds on the convergence time of random Clifford circuits to the t-th moment of the uniform distribution on the Clifford group. Our proofs exploit a recently developed variant of Schur-Weyl duality for the Clifford group, as well as bounds on restricted spectral gaps of averaging operators.
Funder
Deutsche Forschungsgemeinschaft
Army Research Office
Horizon2020
John Templeton Foundation
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献