Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference45 articles.
1. Ambrosio, L., Feng, J.: On a class of first order Hamilton–Jacobi equations in metric spaces. J. Differ. Equ. 256(7), 2194–2245 (2014). https://doi.org/10.1016/j.jde.2013.12.018
2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures. In: Lectures in Mathematics ETH Zürich, 2, x+334. Birkhäuser, Basel (2008)
3. Caprino, S., De Masi, A., Presutti, E., Pulvirenti, M.: A stochastic particle system modeling the Carleman equation. J. Stat. Phys. 55(3–4), 625–638 (1989)
4. Crandall, M.G., Lions, P.-L.: Hamilton–Jacobi equations in infinite dimensions. I. Uniqueness of viscosity solutions. J. Funct. Anal. 62(3), 379–396 (1985). https://doi.org/10.1016/0022-1236(85)90011-4
5. Crandall, M.G., Lions, P.-L.: Hamilton–Jacobi equations in infinite dimensions. II. Existence of viscosity solutions. J. Funct. Anal. 65(3), 368–405 (1986). https://doi.org/10.1016/0022-1236(86)90026-1
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献