A comparison principle for semilinear Hamilton–Jacobi–Bellman equations in the Wasserstein space

Author:

Daudin Samuel,Seeger BenjaminORCID

Abstract

AbstractThe goal of this paper is to prove a comparison principle for viscosity solutions of semilinear Hamilton–Jacobi equations in the space of probability measures. The method involves leveraging differentiability properties of the 2-Wasserstein distance in the doubling of variables argument, which is done by introducing a further entropy penalization that ensures that the relevant optima are achieved at positive, Lipschitz continuous densities with finite Fischer information. This allows to prove uniqueness and stability of viscosity solutions in the class of bounded Lipschitz continuous (with respect to the 1-Wasserstein distance) functions. The result does not appeal to a mean field control formulation of the equation, and, as such, applies to equations with nonconvex Hamiltonians and measure-dependent volatility. For convex Hamiltonians that derive from a potential, we prove that the value function associated with a suitable mean-field optimal control problem with nondegenerate idiosyncratic noise is indeed the unique viscosity solution.

Funder

National Science Foundation

H2020 European Research Council

Publisher

Springer Science and Business Media LLC

Reference46 articles.

1. Alfonsi, A., Jourdain, B.: Squared quadratic Wasserstein distance: optimal couplings and Lions differentiability. ESAIM: Probab. Stat. 24, 703–717 (2020)

2. Ambrosio, L., Brué, E., Semola, D.: Lectures on optimal transport, vol. 130. Unitext. Springer, Cham (2021) © 2021. La Matematica per il 3+2

3. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows Metr Sp. Sp. Probab Meas., 2nd edn. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2008)

4. Bayraktar, E., Ekren, I., Zhang, X.: Comparison of viscosity solutions for a class of second order PDEs on the Wasserstein space. Preprint, arXiv:2309.05040 [math.AP]

5. Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Correction: a comparison principle for semilinear Hamilton–Jacobi–Bellman equations in the Wasserstein space;Calculus of Variations and Partial Differential Equations;2024-07-16

2. Viscosity Solutions of the Eikonal Equation on the Wasserstein Space;Applied Mathematics & Optimization;2024-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3