Random Spanning Forests and Hyperbolic Symmetry

Author:

Bauerschmidt RolandORCID,Crawford Nicholas,Helmuth Tyler,Swan Andrew

Abstract

AbstractWe study (unrooted) random forests on a graph where the probability of a forest is multiplicatively weighted by a parameter $$\beta >0$$ β > 0 per edge. This is called the arboreal gas model, and the special case when $$\beta =1$$ β = 1 is the uniform forest model. The arboreal gas can equivalently be defined to be Bernoulli bond percolation with parameter $$p=\beta /(1+\beta )$$ p = β / ( 1 + β ) conditioned to be acyclic, or as the limit $$q\rightarrow 0$$ q 0 with $$p=\beta q$$ p = β q of the random cluster model. It is known that on the complete graph $$K_{N}$$ K N with $$\beta =\alpha /N$$ β = α / N there is a phase transition similar to that of the Erdős–Rényi random graph: a giant tree percolates for $$\alpha > 1$$ α > 1 and all trees have bounded size for $$\alpha <1$$ α < 1 . In contrast to this, by exploiting an exact relationship between the arboreal gas and a supersymmetric sigma model with hyperbolic target space, we show that the forest constraint is significant in two dimensions: trees do not percolate on $${\mathbb {Z}}^2$$ Z 2 for any finite $$\beta >0$$ β > 0 . This result is a consequence of a Mermin–Wagner theorem associated to the hyperbolic symmetry of the sigma model. Our proof makes use of two main ingredients: techniques previously developed for hyperbolic sigma models related to linearly reinforced random walks and a version of the principle of dimensional reduction.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Reference51 articles.

1. Abrahams, E., Anderson, P.W., Licciardello, D.C., Ramakrishnan, T.V.: Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673–676 (1979)

2. Albeverio, S., Vecchi, F.C.D., Gubinelli, M.: Elliptic stochastic quantization. Preprint, arXiv:1812.04422

3. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley Series in Discrete Mathematics and Optimization, 4th edn. Wiley, Hoboken (2016)

4. Angel, O., Crawford, N., Kozma, G.: Localization for linearly edge reinforced random walks. Duke Math. J. 163(5), 889–921 (2014)

5. Bauerschmidt, R., Helmuth, T., Swan, A.: The geometry of random walk isomorphism theorems. Ann. Inst. Henri Poincaré Probab. Stat. (to appear)

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3