Abstract
AbstractIn our previous article (http://arxiv.org/abs/1607.06041), we established an equivalence between pointed pivotal module tensor categories and anchored planar algebras. This article introduces the notion of unitarity for both module tensor categories and anchored planar algebras, and establishes the unitary analog of the above equivalence. Our constructions use Baez’s 2-Hilbert spaces (i.e., semisimple $$\textrm{C}^*$$
C
∗
-categories equipped with unitary traces), the unitary Yoneda embedding, and the notion of unitary adjunction for dagger functors between 2-Hilbert spaces.
Funder
Directorate for Mathematical and Physical Sciences
Centre of Excellence for Quantum Computation and Communication Technology, Australian Research Council
Publisher
Springer Science and Business Media LLC
Reference44 articles.
1. Aasen, D., Lake, E., Walker, K.: Fermion condensation and super pivotal categories. J. Math. Phys. 60(12), 121901 (2019). https://doi.org/10.1063/1.5045669. arXiv:1709.01941
2. Baez, J.C.: Higher-dimensional algebra. II. $$2$$-Hilbert spaces. Adv. Math. 127(2), 125–189 (1997). https://doi.org/10.1006/aima.1997.1617
3. Bischoff, M. , Charlesworth, I. , Evington, S.,Giorgetti, L. , Penneys, D.: Distortion for multifactor bimodules and representations of multifusion categories, 2020. arXiv:2010.01067
4. Baez, J.C., Dolan, J.: Higher-dimensional algebra and topological quantum field theory. J. Math. Phys. 36(11), 6073–6105 (1995). https://doi.org/10.1063/1.531236. arXiv:q-alg/9503002
5. Bartels, A., Douglas, C.L., Henriques, A.: Dualizability and index of subfactors. Quantum Topol. 5(3), 289–345 (2014). https://doi.org/10.4171/QT/53. arXiv:1110.5671
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Unitary Anchored Planar Algebras;Communications in Mathematical Physics;2024-05-25