Author:
Brüning Jochen,Fajman David
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference20 articles.
1. Band R., Shapira T., Smilansky U.: Nodal domains on isospectral quantum graphs: the resolution of isospectrality. J. Phys. A: Math. Gen. 39, 13999 (2006)
2. Berger M., Gauduchon P., Mazet E.: Le spectre d’une Variété Riemannienne Lecture Notes in Mathematics 194. Springer, Berlin (1971)
3. Brüning J., Klawonn D., Puhle C.: Comment on “Resolving Isospectral ‘drums’ by counting nodal domains”. J. Phys. A: Math. Theor. 40, 5143 (2007)
4. Cervino, J., Hein, G.: The Conway-Sloane tetralattice pairs are non-isometric. http://arXiv.org/abs/0910.2127v1 [math.NT], 2009
5. Conway J.H., Sloane N.J.A.: Four-dimensional lattices with the same theta series. Int. Math. Res. Not. 4, 93–96 (1992)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Neumann Domains on Quantum Graphs;Annales Henri Poincaré;2021-05-19
2. Isospectral discrete and quantum graphs with the same flip counts and nodal counts;Journal of Physics A: Mathematical and Theoretical;2018-05-23
3. The Number of Nodal Components of Arithmetic Random Waves;International Mathematics Research Notices;2016-10-25
4. Topological Properties of Neumann Domains;Annales Henri Poincaré;2016-03-08
5. The nodal count {0,1,2,3,…} implies the graph is a tree;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2014-01-28