Affiliation:
1. Department of Mathematics, University of Bristol, University Walk, Clifton, Bristol BS8 1TW, UK
Abstract
Sturm's oscillation theorem states that the
n
th eigenfunction of a Sturm–Liouville operator on the interval has
n
−1 zeros (nodes) (Sturm 1836
J. Math. Pures Appl.
1
, 106–186; 373–444). This result was generalized for all metric tree graphs (Pokornyĭ
et al.
1996
Mat. Zametki
60
, 468–470 (
doi:10.1007/BF02320380
); Schapotschnikow 2006
Waves Random Complex Media
16
, 167–178 (
doi:10.1080/1745530600702535
)) and an analogous theorem was proved for discrete tree graphs (Berkolaiko 2007
Commun. Math. Phys.
278
, 803–819 (
doi:10.1007/S00220-007-0391-3
); Dhar & Ramaswamy 1985
Phys. Rev. Lett.
54
, 1346–1349 (
doi:10.1103/PhysRevLett.54.1346
); Fiedler 1975
Czechoslovak Math. J.
25
, 607–618). We prove the converse theorems for both discrete and metric graphs. Namely if for all
n
, the
n
th eigenfunction of the graph has
n
−1 zeros, then the graph is a tree. Our proofs use a recently obtained connection between the graph's nodal count and the magnetic stability of its eigenvalues (Berkolaiko 2013
Anal. PDE
6
, 1213–1233 (
doi:10.2140/apde.2013.6.1213
); Berkolaiko & Weyand 2014
Phil. Trans. R. Soc. A
372
, 20120522 (
doi:10.1098/rsta.2012.0522
); Colin de Verdière 2013
Anal. PDE
6
, 1235–1242 (
doi:10.2140/apde.2013.6.1235
)). In the course of the proof, we show that it is not possible for all (or even almost all, in the metric case) the eigenvalues to exhibit a diamagnetic behaviour. In addition, we develop a notion of ‘discretized’ versions of a metric graph and prove that their nodal counts are related to those of the metric graph.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Reference63 articles.
1. Mémoire sur les équations différentielles linéaires du second ordre;Sturm C;J. Math. Pures Appl.,1836
2. Mémoire sur une classe d'équations à différences partielles”;Sturm C;J. Math. Pures Appl.,1836
3. Ein allgemeiner satz zur theorie der eigenfunktione selbstadjungierter differentialausdrücke;Courant R;Nachr. Ges. Wiss. Gttingen Math. Phys.,1923
4. Remarks on courant's nodal line theorem
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献