The nodal count {0,1,2,3,…} implies the graph is a tree

Author:

Band Ram1

Affiliation:

1. Department of Mathematics, University of Bristol, University Walk, Clifton, Bristol BS8 1TW, UK

Abstract

Sturm's oscillation theorem states that the n th eigenfunction of a Sturm–Liouville operator on the interval has n −1 zeros (nodes) (Sturm 1836 J. Math. Pures Appl. 1 , 106–186; 373–444). This result was generalized for all metric tree graphs (Pokornyĭ et al. 1996 Mat. Zametki 60 , 468–470 ( doi:10.1007/BF02320380 ); Schapotschnikow 2006 Waves Random Complex Media 16 , 167–178 ( doi:10.1080/1745530600702535 )) and an analogous theorem was proved for discrete tree graphs (Berkolaiko 2007 Commun. Math. Phys. 278 , 803–819 ( doi:10.1007/S00220-007-0391-3 ); Dhar & Ramaswamy 1985 Phys. Rev. Lett. 54 , 1346–1349 ( doi:10.1103/PhysRevLett.54.1346 ); Fiedler 1975 Czechoslovak Math. J. 25 , 607–618). We prove the converse theorems for both discrete and metric graphs. Namely if for all n , the n th eigenfunction of the graph has n −1 zeros, then the graph is a tree. Our proofs use a recently obtained connection between the graph's nodal count and the magnetic stability of its eigenvalues (Berkolaiko 2013 Anal. PDE 6 , 1213–1233 ( doi:10.2140/apde.2013.6.1213 ); Berkolaiko & Weyand 2014 Phil. Trans. R. Soc. A 372 , 20120522 ( doi:10.1098/rsta.2012.0522 ); Colin de Verdière 2013 Anal. PDE 6 , 1235–1242 ( doi:10.2140/apde.2013.6.1235 )). In the course of the proof, we show that it is not possible for all (or even almost all, in the metric case) the eigenvalues to exhibit a diamagnetic behaviour. In addition, we develop a notion of ‘discretized’ versions of a metric graph and prove that their nodal counts are related to those of the metric graph.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference63 articles.

1. Mémoire sur les équations différentielles linéaires du second ordre;Sturm C;J. Math. Pures Appl.,1836

2. Mémoire sur une classe d'équations à différences partielles”;Sturm C;J. Math. Pures Appl.,1836

3. Ein allgemeiner satz zur theorie der eigenfunktione selbstadjungierter differentialausdrücke;Courant R;Nachr. Ges. Wiss. Gttingen Math. Phys.,1923

4. Remarks on courant's nodal line theorem

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Higher Eigenvalues and Topological Perturbations;Operator Theory: Advances and Applications;2023-11-08

2. Minimizing Optimal Transport for Functions with Fixed-Size Nodal Sets;Journal of Nonlinear Science;2023-08-14

3. Universality of Nodal Count Distribution in Large Metric Graphs;Experimental Mathematics;2022-07-04

4. On fully supported eigenfunctions of quantum graphs;Letters in Mathematical Physics;2021-12

5. On Pleijel’s Nodal Domain Theorem for Quantum Graphs;Annales Henri Poincaré;2021-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3