1. Aizenman, M., Holley, R.: Rapid convergence to equilibrium of stochastic Ising models in the Dobrushin Shlosman regime, (Minneapolis, Minn., 1984), IMA Vol. Math. Appl., Vol. 8. New York: Springer, 1987, pp. 1–11
2. Aldous, D., Fill, J.A.: Reversible Markov Chains and Random Walks on Graphs. In preparation, http://www.stat.berkeley.edu/~aldous/RWG/book.html
3. Alexander K.S.: On weak mixing in lattice models. Prob. Th. Rel. Fields 110(4), 441–471 (1998)
4. Berger, N., Kenyon, C., Mossel, E., Peres, Y.: Glauber dynamics on trees and hyper- bolic graphs. Prob. Th. Rel. Fields 131(3), 311–340 (2005), preliminary version by Kenyon, C., Mossel, E., Peres, Y. appeared in Proc. of the 42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2001), pp. 568–578
5. Camia F., Newman C.M.: Ising (conformal) fields and cluster area measures. Proc. Natl. Acad. Sci. USA 106(14), 5463–5547 (2009)