Spatial mixing and the random‐cluster dynamics on lattices

Author:

Gheissari Reza1ORCID,Sinclair Alistair2

Affiliation:

1. Department of Mathematics Northwestern University Evanston Illinois USA

2. Computer Science Division UC Berkeley Berkeley California USA

Abstract

AbstractAn important paradigm in the understanding of mixing times of Glauber dynamics for spin systems is the correspondence between spatial mixing properties of the models and bounds on the mixing time of the dynamics. This includes, in particular, the classical notions of weak and strong spatial mixing, which have been used to show the best known mixing time bounds in the high‐temperature regime for the Glauber dynamics for the Ising and Potts models. Glauber dynamics for the random‐cluster model does not naturally fit into this spin systems framework because its transition rules are not local. In this article, we present various implications between weak spatial mixing, strong spatial mixing, and the newer notion of spatial mixing within a phase, and mixing time bounds for the random‐cluster dynamics in finite subsets of for general . These imply a host of new results, including optimal mixing for the random cluster dynamics on torii and boxes on vertices in at all high temperatures and at sufficiently low temperatures, and for large values of quasi‐polynomial (or quasi‐linear when ) mixing time bounds from random phase initializations on torii at the critical point (where by contrast the mixing time from worst‐case initializations is exponentially large). In the same parameter regimes, these results translate to fast sampling algorithms for the Potts model on for general .

Funder

Adolph C. and Mary Sprague Miller Institute for Basic Research in Science, University of California Berkeley

National Science Foundation of Sri Lanka

Publisher

Wiley

Subject

Applied Mathematics,Computer Graphics and Computer-Aided Design,General Mathematics,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3