Experimental study of enhanced oil recovery by CO2 huff-n-puff in shales and tight sandstones with fractures

Author:

Zhu Chao-Fan,Guo Wei,Wang You-Ping,Li Ya-Jun,Gong Hou-Jian,Xu Long,Dong Ming-Zhe

Abstract

AbstractThe fractures and kerogen, which generally exist in the shale, are significant to the CO2 huff-n-puff in the shale reservoir. It is important to study the effects of fractures and kerogen on oil recovery during CO2 huff-n-puff operations in the fracture–matrix system. In this study, a modified CO2 huff-n-puff experiment method is developed to estimate the recovery factors and the CO2 injectivity in the fractured organic-rich shales and tight sandstones. The effects of rock properties, injection pressure, and injection time on the recovery factors and CO2 usage efficiency in shales and sandstones are discussed, respectively. The results show that although the CO2 injectivity in the shale is higher than that in the sandstone with the same porosity; besides, the recovery factors of two shale samples are much lower than that of two sandstone samples. This demonstrates that compared with the tight sandstone, more cycles are needed for the shale to reach a higher recovery factor. Furthermore, there are optimal injection pressures (close to the minimum miscible pressure) and CO2 injection volumes for CO2 huff-n-puff in the shale. Since the optimal CO2 injection volume in the shale is higher than that in the sandstone, more injection time is needed to enhance the oil recovery in the shale. There is a reference sense for CO2 huff-n-puff in the fractured shale oil reservoir for enhanced oil recovery (EOR) purposes.

Publisher

Elsevier BV

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics,Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3