Tight gas production model considering TPG as a function of pore pressure, permeability and water saturation

Author:

Zafar Atif,Su Yu-Liang,Li Lei,Fu Jin-Gang,Mehmood Asif,Ouyang Wei-Ping,Zhang Mian

Abstract

AbstractThreshold pressure gradient has great importance in efficient tight gas field development as well as for research and laboratory experiments. This experimental study is carried out to investigate the threshold pressure gradient in detail. Experiments are carried out with and without back pressure so that the effect of pore pressure on threshold pressure gradient may be observed. The trend of increasing or decreasing the threshold pressure gradient is totally opposite in the cases of considering and not considering the pore pressure. The results demonstrate that the pore pressure of tight gas reservoirs has great influence on threshold pressure gradient. The effects of other parameters like permeability and water saturation, in the presence of pore pressure, on threshold pressure gradient are also examined which show that the threshold pressure gradient increases with either a decrease in permeability or an increase in water saturation. Two new correlations of threshold pressure gradient on the basis of pore pressure and permeability, and pore pressure and water saturation, are also introduced. Based on these equations, new models for tight gas production are proposed. The gas slip correction factor is also considered during derivation of this proposed tight gas production models. Inflow performance relationship curves based on these proposed models show that production rates and absolute open flow potential are always be overestimated while ignoring the threshold pressure gradients.

Publisher

Elsevier BV

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics,Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3