A New Dynamic Model of Supply Boundary at Low Pressure in Tight Gas Reservoir

Author:

Li Jinbu1,Liu Lili1,Zhu Yuan2,Zhao Lian1,Chai Xiaolong2,Tian Leng2

Affiliation:

1. Exploration and Development Research Institute of Petro-China Changqing Oil Field Company Ltd

2. China University of Petroleum (Beijing)

Abstract

Abstract

It is a clean, low-carbon energy source for tight gas that has gained popularity in the energy sector for its ability to significantly cut greenhouse gas emissions. On the other hand, low formation pressure, low gas well production, and high water saturation are features of tight gas reservoirs that have been developed and produced over an extended period of time. In order to improve the assessment of the supply boundary and production capacity features of tight gas wells at low pressure, a new coupling model of gas-water two-phase was established in this paper and the threshold pressure gradient, stress sensitivity and slip effect are taken into account the built model. Subsequently, the steady-state substitution method and the material balance method were used to develop the supply boundary calculation model. Finally, an analysis is done on how the supply boundary is affected by the threshold pressure gradient production, stress sensitivity and production pressure difference. The results demonstrate that, in contrast to the slower propagation observed in the matrix zone, the supply boundary propagates relatively quickly within the fracture modification zone. The threshold pressure gradient and stress-sensitive increase the resistance of gas seepage and delay the propagation of the supply boundary, which reduces the production of gas well. The propagation of the supply boundary accelerates with increasing production pressure difference, but the pressure difference's effect decreases. The production of gas is significantly impacted by the threshold pressure gradient, stress sensitivity and production pressure difference. Efficient production of tight gas reservoirs necessitates minimizing water production and preserving formation pressure.

Publisher

Springer Science and Business Media LLC

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3