Improved AHP–TOPSIS model for the comprehensive risk evaluation of oil and gas pipelines

Author:

Wang Xia,Duan Qingquan

Abstract

Abstract A comprehensive and objective risk evaluation model of oil and gas pipelines based on an improved analytic hierarchy process (AHP) and technique for order preference by similarity to an ideal solution (TOPSIS) is established to identify potential hazards in time. First, a barrier model and fault tree analysis are used to establish an index system for oil and gas pipeline risk evaluation on the basis of five important factors: corrosion, external interference, material/construction, natural disasters, and function and operation. Next, the index weight for oil and gas pipeline risk evaluation is computed by applying the improved AHP based on the five-scale method. Then, the TOPSIS of a multi-attribute decision-making theory is studied. The method for determining positive/negative ideal solutions and the normalized equation for benefit/cost indexes is improved to render TOPSIS applicable for the comprehensive risk evaluation of pipelines. The closeness coefficient of oil and gas pipelines is calculated by applying the improved TOPSIS. Finally, the weight and the closeness coefficient are combined to determine the risk level of pipelines. Empirical research using a long-distance pipeline as an example is conducted, and adjustment factors are used to verify the model. Results show that the risk evaluation model of oil and gas pipelines based on the improved AHP–TOPSIS is valuable and feasible. The model comprehensively considers the risk factors of oil and gas pipelines and provides comprehensive, rational, and scientific evaluation results. It represents a new decision-making method for systems engineering in pipeline enterprises and provides a comprehensive understanding of the safety status of oil and gas pipelines. The new system engineering decision-making method is important for preventing oil and gas pipeline accidents.

Publisher

Elsevier BV

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics,Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3