Mechanisms and capacity of high-pressure soaking after hydraulic fracturing in tight/shale oil reservoirs

Author:

Wang Jing,Liu Hui-Qing,Qian Gen-Bao,Peng Yong-Can

Abstract

AbstractHuff-n-puff by water has been conducted to enhance oil recovery after hydraulic fracturing in tight/shale oil reservoirs. However, the mechanisms and capacity are still unclear, which significantly limits the application of this technique. In order to figure out the mechanisms, the whole process of pressurizing, high-pressure soaking, and depressurizing was firstly discussed, and a mechanistic model was established. Subsequently, the simulation model was verified and employed to investigate the significances of high-pressure soaking, the contributions of different mechanisms, and the sensitivity analysis in different scenarios. The results show that high-pressure soaking plays an essential role in oil production by both imbibition and elasticity after hydraulic fracturing. The contribution of imbibition increases as the increase in bottom hole pressure (BHP), interfacial tension, and specific surface area, but slightly decreases as the oil viscosity increases. In addition, it first decreases and then slightly increases with the increase in matrix permeability. The optimal soaking time is linear with the increases of both oil viscosity and BHP and logarithmically declines with the increase in matrix permeability and specific surface area. Moreover, it shows a rising tendency as the interficial tension (IFT) increases. Overall, a general model was achieved to calculate the optimal soaking time.

Publisher

Elsevier BV

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics,Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3