Rock-Fluid Interactions in the Duvernay Formation: Measurement of Wettability and Imbibition Oil Recovery

Author:

Begum Momotaj1,Reza Yassin Mahmood1,Dehghanpour Hassan1,Dunn Lindsay2

Affiliation:

1. University of Alberta

2. Athabasca Oil Corporation

Abstract

Abstract In this study, we evaluate the wettability of shale samples drilled in the Duvernay Formation, which is a source-rock reservoir located in the Western Canadian Sedimentary Basin (WCSB). We use reservoir oil and brine to conduct air-liquid contact angle and air-liquid spontaneous imbibition tests for wettability measurements. We characterize the shale samples by measuring pressure-decay permeability, effective porosity, initial oil and water saturations, mineralogy, total organic carbon (TOC) content, and conducting rock-eval pyrolysis tests. We also conduct Scanning Electron Microscope (SEM) and energy-dispersive x-ray spectroscopy (EDS) analyses on the shale samples to characterize the location and size of pores. After evaluation of wettability, we conduct soaking experiments. First, we measure liquid-liquid contact angles for the droplets of the soaking fluids and reservoir oil equilibrated on surface of the rock samples. Then, we immerse the oil-saturated samples in the soaking fluids with different compositions and physical properties. The we record the oil volume produced due to spontaneous imbibition of the soaking fluids. The soaking fluids are characterized by measuring surface tension, interfacial tension (IFT), viscosity, and pH. We analyze the results of soaking tests and investigate the controlling parameters affecting oil recover factor (RF). The results of wettability measurements demonstrate that the shale samples have stronger wetting affinity to oil compared with brine. The positive correlations of TOC content with effective porosity and pressure-decay permeability suggest that the majority of connected pores are present within the organic matter. Organic porosity may explain the strong oil-wetness of the shale samples. The SEM/EDS analyses also show the abundance of organic nanopores within organic matter. The results of liquid-liquid contact angle tests show that a reduction in IFT of the soaking fluid leads to an increase in wetting affinity of rock to soaking fluid. The results also show that oil RF is higher for soaking fluids with lower IFT, which can be explained by wettability alteration. The shale samples have higher wetting affinity to soaking fluids with lower IFT, leading to an increase in the driving capillary pressure and, consequently to higher oil recovery by spontaneous imbibition. In addition, comparing the results of air-brine imbibition with soaking tests suggests that adding surfactant to the soaking fluid may alter the wettability of organic pores towards more water-wetness, leading to the displacement of oil from hydrophobic organic pores.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3