Abstract
AbstractModern multi-megawatt wind turbines require powerful control algorithms which consider several control objectives at the same time and respect process constraints. Model predictive control (MPC) is a promising control method and has been a research topic for years. So far, very few studies evaluated MPC algorithms in field tests. This work aims to prepare a real-time MPC system for a full-scale field test in a 3 MW wind turbine. To this end, we introduce a weight-scheduling scheme for a linear time-variant MPC in order to ensure control operation over the entire operating range from the partial to the full load range. We use a rapid control prototyping process, in particular with comprehensive software-in-the-loop (SiL) tests, in order to design and validate the MPC system for the field test.In this contribution, we present the implementation of the linear time-variant MPC with weight-scheduling to be tested in the field test. With the weight-scheduling for the optimization problem inside the MPC, we achieved good performance over the entire operating range of the wind turbine. In the SiL tests, the proposed MPC algorithm achieved loads, comparable to the baseline controller of the wind turbine and improved the reference tracking of the power output and the rotational speed. The proposed linear time-variant MPC with weight-scheduling is fully validated in the presented software-in-the-loop tests and is ready for full-scale field test in the 3 MW wind turbine. We present the experimental field test results of the introduced MPC system in a separated contribution.
Publisher
Springer Science and Business Media LLC
Reference14 articles.
1. Lio WH, Rossiter JA, Jones BL (2014) A review on applications of model predictive control to wind turbines. In: UKACC International Conference on Control (CONTROL) 2014 Loughborough, UK, 09.07.2014–11.07.2014, pp 673–678 https://doi.org/10.1109/CONTROL.2014.6915220
2. Gros S, Schild A (2017) Real-time economic nonlinear model predictive control for wind turbine control. Int J Control 90(12):2799–2812. https://doi.org/10.1080/00207179.2016.1266514
3. Kong X, Ma L, Liu X, Abdelbaky MA, Wu Q (2020) Wind turbine control using nonlinear economic model predictive control over all operating regions. Energies 13:184. https://doi.org/10.3390/en13010184
4. Dickler S, Kallen T, Zierath J, Abel D (2020) Rapid control prototyping of model predictive wind turbine control toward field testing. J Phys Conf Ser 1618:22068. https://doi.org/10.1088/1742-6596/1618/2/022068
5. Dickler S, Wintermeyer-Kallen, Zierath J, Bockhahn R, Machost D, Konrad T, Abel D (2021) Full-scale field-test of a model predictive control system for a 3 MW wind turbine. In: Conference for Wind Power Drives (CWD) (accepted in February 2021)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献