Robust control of wind turbines to reduce wind power fluctuation

Author:

Tang Minan1ORCID,Wang Wenjuan1,Zhen Xiaofei1,An Bo2,Zhang Yaqi2,Yan Yaguang2

Affiliation:

1. School of New Energy and Power Engineering Lanzhou Jiaotong University Lanzhou China

2. School of Automation and Electrical Engineering Lanzhou Jiaotong University Lanzhou China

Abstract

AbstractThe wind power generation system of a 5 MW horizontal axis wind turbine has a high wind energy conversion efficiency. The proportion of installed capacity in practical production applications is increasing year on year, so that the stability of its operation becomes a central factor in determining the productivity of the wind farm in question. This paper takes a 5 MW wind turbine as the research object and proposes a parameter‐adaptive robust model predictive control method to achieve self‐optimization of controller parameters through a Bayesian optimization approach. A robust model predictive control strategy, aiming to reduce the power fluctuation while maximizing the power output, is developed in this paper to enhance the dynamic economic performance under uncertain wind speed variation. A Bayesian algorithm is used in this paper to optimize the parameters of the controller. Moreover, wind speeds are simulated using TurbSim for different turbulence intensities of 5%, 10%, and 15% turbulence. Finally, the robust model predictive control toolbox in MATLAB is designed and simulated. The results show that the operational instability of the wind energy system is overcome. Meanwhile, the robustness of the wind energy system operation is improved compared to the traditional model predictive control approach.

Funder

Natural Science Foundation of Gansu Province

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3