Datengetriebener virtueller Sensor für die Online Abschätzung der Lasten im Antriebsstrang von Windkraftanlagen

Author:

Kamel OmarORCID,Kretschmer Matthias,Pfeifer Stefan,Luhmann Birger,Hauptmann Stefan,Bottasso Carlo L.

Abstract

AbstractData-driven approaches have gained interest recently in the field of wind energy. Data-driven online estimators have been investigated and demonstrated in several applications such as online loads estimation, wake center position estimations, online damage estimation. The present work demonstrates the application of machine learning algorithms to formulate an estimator of the internal loads acting on the bearings of the drivetrain of onshore wind turbines. The loads estimator is implemented as a linear state-space model that is augmented with a non-linear feed-forward neural network. The estimator infers the loads time series as a function of the standard measurements from the SCADA and condition monitoring systems (CMS). A formal analysis of the available data is carried out to define the structure of the virtual sensor regarding the order of the models, number of states, architecture of neural networks. Correlation coefficient of 98% in the time domain and matching of the frequency signature are achieved. Several applications are mentioned and discussed in this work such as online estimation of the forces for monitoring and model predictive control applications.

Funder

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3