The combined effect of fractures and mineral content on coal hydromechanical response

Author:

Lv Adelina,Bahaaddini Mojtaba,Masoumi Hossein,Roshan Hamid

Abstract

AbstractThe hydromechanical behaviour of fractured coal is a complex function of interaction between coal bulk and fracture deformation driven by fluid pressure and external stress. Despite the research studies conducted to date, the combined effect of mineral content and fracture structure on hydromechanical behaviour of sorptive fractured coal remains unexplored. To study this combined effect, we performed a series of X-ray computed tomography (XRCT) imaging on a range of coal specimens with non-sorbing (helium) and sorbing (CO2) gases at different effective stress paths using a newly developed X-ray transparent triaxial system. The compressibility of system components was obtained from processed 3D XRCT images which were used to interpret the results. The results of this study show that coal matrix/solid compressibility has a positive nonlinear relation with mineral content irrespective of mineral type. Effective stress coefficient is also a strong function of both mineral content and fracture porosity. Furthermore, the increase in mineral content leads to less fracture opening by an increase in helium pressure. Interestingly, the effect of mineral content on the bulk strength of coal is more significant than the effect of fracture porosity. Finally, coal with more open fractures shows less bulk swelling by gas adsorption under external stress due to damping effect of fracture volume on developed internal volumetric swelling strain.

Funder

Australian Coal Industry’s Research Program

University of New South Wales

Publisher

Springer Science and Business Media LLC

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3