Rheology and microstructure effects of waste spent coffee grounds in modifying asphalt binder

Author:

Xie Mingjun,Xu Linglin,Wu Kai,Wen Yutong,Jiang Hongmi,Jiang Zhengwu

Abstract

AbstractHerein the biowaste by-product spent coffee grounds (SCGs) from coffee industry were incorporated into asphalt binders for performance enhancement. From the analysis of Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), dynamic shear rheometer (DSR), and Brookfield viscosity rheometer, it is confirmed that SCGs have potential prospects as bio-waste modifiers in the application of sustainable pavements. Results demonstrated that the modification process was mainly based on physical reinforcement. Compared with that of the neat asphalt, the shearing stress-resistant ability and high-temperature performance of the SCGs modified binders with the appropriate addition presented a bit of improvement; whereas the binders with 1% and 3% SCGs exhibited remarkably enhanced low-temperature stability. However, notable weaknesses of practical performance were shown for the binder with excessive content of SCGs, indicating the necessity of proportion selecting before application.

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3