1. Arias-Castro, E., Mason, D., Pelletier, B.: On the estimation of the gradient lines of a density and the consistency of the mean-shift algorithm. J. Mach. Learn. Res. 17, 43 (2016)
2. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68(3), 337–404 (1950)
3. Bach, F., Lacoste-Julien, S., Obozinski, G.: On the equivalence between herding and conditional gradient algorithms. In: Proceedings of the 29th International Coference on International Conference on Machine Learning (ICML’12), pp. 1355–1362. Omnipress (2012)
4. Banaszczyk, W.: Balancing vectors and Gaussian measures of $$n$$-dimensional convex bodies. Random Struct. Algorithms 12(4), 351–360 (1998)
5. Bansal, N., Dadush, D., Garg, S., Lovett, S.: The Gram–Schmidt walk: a cure for the Banaszczyk blues (STOC’18). In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pp. 587–597. ACM, New York (2018)