Recursive Scheme for Angles of Random Simplices, and Applications to Random Polytopes

Author:

Kabluchko ZakharORCID

Abstract

AbstractConsider a random simplex $$[X_1,\ldots ,X_n]$$ [ X 1 , , X n ] defined as the convex hull of independent identically distributed (i.i.d.) random points $$X_1,\ldots ,X_n$$ X 1 , , X n in $$\mathbb {R}^{n-1}$$ R n - 1 with the following beta density: "Equation missing" Let $$J_{n,k}(\beta )$$ J n , k ( β ) be the expected internal angle of the simplex $$[X_1,\ldots ,X_n]$$ [ X 1 , , X n ] at its face $$[X_1,\ldots ,X_k]$$ [ X 1 , , X k ] . Define $${\tilde{J}}_{n,k}(\beta )$$ J ~ n , k ( β ) analogously for i.i.d. random points distributed according to the beta$$'$$ density $${\tilde{f}}_{n-1,\beta } (x) \propto (1+\Vert x\Vert ^2)^{-\beta }, x\in \mathbb {R}^{n-1}, \beta > ({n-1})/{2}.$$ f ~ n - 1 , β ( x ) ( 1 + x 2 ) - β , x R n - 1 , β > ( n - 1 ) / 2 . We derive formulae for $$J_{n,k}(\beta )$$ J n , k ( β ) and $${\tilde{J}}_{n,k}(\beta )$$ J ~ n , k ( β ) which make it possible to compute these quantities symbolically, in finitely many steps, for any integer or half-integer value of $$\beta $$ β . For $$J_{n,1}(\pm 1/2)$$ J n , 1 ( ± 1 / 2 ) we even provide explicit formulae in terms of products of Gamma functions. We give applications of these results to two seemingly unrelated problems of stochastic geometry: (i) We compute explicitly the expected f-vectors of the typical Poisson–Voronoi cells in dimensions up to 10. (ii) Consider the random polytope $$K_{n,d} := [U_1,\ldots ,U_n]$$ K n , d : = [ U 1 , , U n ] where $$U_1,\ldots ,U_n$$ U 1 , , U n are i.i.d. random points sampled uniformly inside some d-dimensional convex body K with smooth boundary and unit volume. Reitzner (Adv. Math. 191(1), 178–208 (2005)) proved the existence of the limit of the normalised expected f-vector of $$K_{n,d}$$ K n , d : $$ \lim _{n\rightarrow \infty } n^{-{({d-1})/({d+1})}}{\mathbb {E}}{\mathbf {f}}(K_{n,d}) = {\mathbf {c}}_d \cdot \Omega (K),$$ lim n n - ( d - 1 ) / ( d + 1 ) E f ( K n , d ) = c d · Ω ( K ) , where $$\Omega (K)$$ Ω ( K ) is the affine surface area of K, and $${\mathbf {c}}_d$$ c d is an unknown vector not depending on K. We compute $${\mathbf {c}}_d$$ c d explicitly in dimensions up to $$d=10$$ d = 10 and also solve the analogous problem for random polytopes with vertices distributed uniformly on the sphere.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Theoretical Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sectional Voronoi tessellations: Characterization and high-dimensional limits;Bernoulli;2024-05-01

2. Glasslike caging with random planes;Physical Review E;2024-02-22

3. Limit theory for the first layers of the random convex hull peeling in the unit ball;Probability Theory and Related Fields;2023-09-05

4. On expected face numbers of random beta and beta’ polytopes;Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry;2022-02-11

5. Angle Sums of Random Polytopes;Michigan Mathematical Journal;2022-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3