Abstract
AbstractThe random beta polytope is defined as the convex hull of n independent random points with the density proportional to $$(1-\Vert x\Vert ^2)^\beta $$
(
1
-
‖
x
‖
2
)
β
on the d-dimensional unit ball, where $$\beta >-1$$
β
>
-
1
is a parameter. Similarly, the random beta’ polytope is defined as the convex hull of n independent random points with the density proportional to $$(1+\Vert x\Vert ^2)^{-\beta }$$
(
1
+
‖
x
‖
2
)
-
β
on $$\mathbb R^d$$
R
d
, where $$\beta >\frac{d}{2}$$
β
>
d
2
. In a previous work (Kabluchko, Adv. Math. 380:107612, 2021), we established exact and explicit formulae for the expected f-vectors of these random polytopes in terms of certain definite integrals. In the present paper, we use purely algebraic manipulations to derive several identities for these integrals which yield alternative formulae for the expected f-vectors. Similar algebraic manipulations apply to Stirling numbers and yield the following identity: $$\begin{aligned} \sum _{s=0}^k \genfrac\rbrace \lbrace {0.0pt}{}{n-s}{d-s} (d-s) \genfrac[]{0.0pt}{}{d-s}{k-s}= & {} \sum _{s=0}^k (-1)^s \genfrac\rbrace \lbrace {0.0pt}{}{n-s}{d} \genfrac[]{0.0pt}{}{d+1}{k-s} \\= & {} \sum _{s=0}^{d-k} (-1)^s \genfrac\rbrace \lbrace {0.0pt}{}{n+1}{d-s} \genfrac[]{0.0pt}{}{d-s}{k}. \end{aligned}$$
∑
s
=
0
k
n
-
s
d
-
s
(
d
-
s
)
d
-
s
k
-
s
=
∑
s
=
0
k
(
-
1
)
s
n
-
s
d
d
+
1
k
-
s
=
∑
s
=
0
d
-
k
(
-
1
)
s
n
+
1
d
-
s
d
-
s
k
.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Algebra and Number Theory
Reference18 articles.
1. Affentranger, F.: The expected volume of a random polytope in a ball. J. Microsc. 151(3), 277–287 (1988)
2. Affentranger, F.: The convex hull of random points with spherically symmetric distributions. Rend. Semin. Mat. Torino 49(3), 359–383 (1991)
3. Affentranger, F., Schneider, R.: Random projections of regular simplices. Discret. Comput. Geom. 7(1), 219–226 (1992). https://doi.org/10.1007/BF02187839
4. Bárány, I., Hug, D., Reitzner, M., Schneider, R.: Random points in halfspheres. Random Struct. Algorithms 50(1), 3–22 (2017). https://doi.org/10.1002/rsa.20644
5. Buchta, C., Müller, J.: Random polytopes in a ball. J. Appl. Probab. 21(4), 753–762 (1984)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献