Abstract
AbstractWe show how to construct a $$(1+\varepsilon )$$
(
1
+
ε
)
-spanner over a set $${P}$$
P
of n points in $${\mathbb {R}}^d$$
R
d
that is resilient to a catastrophic failure of nodes. Specifically, for prescribed parameters $${\vartheta },\varepsilon \in (0,1)$$
ϑ
,
ε
∈
(
0
,
1
)
, the computed spanner $${G}$$
G
has $$\begin{aligned} {{\mathcal {O}}}\bigl (\varepsilon ^{-O(d)} {\vartheta }^{-6} n(\log \log n)^6 \log n \bigr ) \end{aligned}$$
O
(
ε
-
O
(
d
)
ϑ
-
6
n
(
log
log
n
)
6
log
n
)
edges. Furthermore, for anyk, and any deleted set $${{B}}\subseteq {P}$$
B
⊆
P
of k points, the residual graph $${G}\setminus {{B}}$$
G
\
B
is a $$(1+\varepsilon )$$
(
1
+
ε
)
-spanner for all the points of $${P}$$
P
except for $$(1+{\vartheta })k$$
(
1
+
ϑ
)
k
of them. No previous constructions, beyond the trivial clique with $${{\mathcal {O}}}(n^2)$$
O
(
n
2
)
edges, were known with this resilience property (i.e., only a tiny additional fraction of vertices, $$\vartheta |B|$$
ϑ
|
B
|
, lose their distance preserving connectivity). Our construction works by first solving the exact problem in one dimension, and then showing a surprisingly simple and elegant construction in higher dimensions, that uses the one-dimensional construction in a black-box fashion.
Funder
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Theoretical Computer Science
Reference25 articles.
1. Abam, M.A., de Berg, M., Farshi, M., Gudmundsson, J.: Region-fault tolerant geometric spanners. Discrete Comput. Geom. 41(4), 556–582 (2009)
2. Abam, M.A., Har-Peled, S.: New constructions of SSPDs and their applications. Comput. Geom. 45(5–6), 200–214 (2012)
3. Alon, N., Schwartz, O., Shapira, A.: An elementary construction of constant-degree expanders. Comb. Probab. Comput. 17(3), 319–327 (2008)
4. Aronov, B., de Berg, M., Cheong, O., Gudmundsson, J., Haverkort, H., Smid, M., Vigneron, A.: Sparse geometric graphs with small dilation. Comput. Geom. 40(3), 207–219 (2008)
5. Arya, S., Mount, D.M., Smid, M.: Randomized and deterministic algorithms for geometric spanners of small diameter. In: 35th Annual Symposium on Foundations of Computer Science (Santa Fe 1994), pp. 703–712. IEEE, Los Alamitos (1994)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献