1. Abu-Affash, A.K., Bar-On, G., Carmi, P.: $$\delta $$-greedy $$t$$-spanner. Comput. Geom. 100, 101807 (2022). https://doi.org/10.1016/j.comgeo.2021.101807
2. Agarwal, P.K.: Range searching. In: Goodman, J.E., O’Rourke, J., Tóth, C.D. (eds.) Handbook of Discrete and Computational Geometry, chap. 40, 3 edn., pp. 1057–1092. CRC Press, Boca Raton (2017)
3. Agarwal, P.K., Wang, Y., Yin, P.: Lower bound for sparse Euclidean spanners. In: Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 670–671 (2005). https://dl.acm.org/citation.cfm?id=1070432.1070525
4. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete Comput. Geom. 9(1), 81–100 (1993). https://doi.org/10.1007/BF02189308
5. Bhore, S., Tóth, C.D.: Light euclidean steiner spanners in the plane. In: Proceedings of the 37th Annual Symposium on Computational Geometry (SoCG). LIPIcs, vol. 189, pp. 15:1–15:17. Schloss Dagstuhl (2021). https://doi.org/10.4230/LIPIcs.SoCG.2021.15