Perfectly Packing a Square by Squares of Nearly Harmonic Sidelength

Author:

Tao TerenceORCID

Abstract

AbstractA well-known open problem of Meir and Moser asks if the squares of sidelength 1/n for $$n\ge 2$$ n 2 can be packed perfectly into a rectangle of area $$\sum _{n=2}^\infty n^{-2}=\pi ^2/6-1$$ n = 2 n - 2 = π 2 / 6 - 1 . In this paper we show that for any $$1/2<t<1$$ 1 / 2 < t < 1 , and any $$n_0$$ n 0 that is sufficiently large depending on t, the squares of sidelength $$n^{-t}$$ n - t for $$n\ge n_0$$ n n 0 can be packed perfectly into a square of area $$\sum _{n=n_0}^\infty n^{-2t}$$ n = n 0 n - 2 t . This was previously known (if one packs a rectangle instead of a square) for $$1/2<t\le 2/3$$ 1 / 2 < t 2 / 3 (in which case one can take $$n_0=1$$ n 0 = 1 ).

Funder

Directorate for Mathematical and Physical Sciences

Simons Foundation

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Theoretical Computer Science

Reference14 articles.

1. Brass, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer, New York (2005)

2. Chalcraft, A.: Perfect square packings. J. Comb. Theory Ser. A 92(2), 158–172 (2000)

3. Croft, H.T., Falconer, K.J., Guy, R.K.: Unsolved Problems in Geometry. Problem Books in Mathematics. Unsolved Problems in Intuitive Mathematics, vol. 2. Springer, New York (1991)

4. Grzegorek, P., Januszewski, J.: A note on three Moser’s problems and two Paulhus’ lemmas. J. Comb. Theory Ser. A 162, 222–230 (2019)

5. Januszewski, J., Zielonka, Ł.: A note on perfect packing of squares and cubes. Acta Math. Hungar. 163(2), 530–537 (2021)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Perfectly Packing an Equilateral Triangle by Equilateral Triangles of Sidelengths $$n^{-1/2-\epsilon }$$;Discrete & Computational Geometry;2024-05-11

2. Filling the plane with squares of harmonic areas;Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry;2024-05-01

3. Packing a triangle by equilateral triangles of harmonic sidelengths;Discrete Mathematics;2024-01

4. Packing squares into a rectangle with a relatively small area;Aequationes mathematicae;2023-02-15

5. Perfectly packing a cube by cubes of nearly harmonic sidelength;Canadian Mathematical Bulletin;2023-02-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3