Abstract
AbstractEquilateral triangles of sidelengths 1, $$2^{-t}$$
2
-
t
, $$3^{-t}$$
3
-
t
, $$4^{-t},\ldots \ $$
4
-
t
,
…
can be packed perfectly into an equilateral triangle, provided that $$\ 1/2<t \le 37/72$$
1
/
2
<
t
≤
37
/
72
. Moreover, for t slightly greater than 1/2, squares of sidelengths 1, $$2^{-t}$$
2
-
t
, $$3^{-t}$$
3
-
t
, $$4^{-t},\ldots \ $$
4
-
t
,
…
can be packed perfectly into a square $$S_t$$
S
t
in such a way that some squares have a side parallel to a diagonal of $$S_t$$
S
t
and the remaining squares have a side parallel to a side of $$S_t$$
S
t
.
Publisher
Springer Science and Business Media LLC
Reference17 articles.
1. Ball, K.: On packing unequal squares. J. Combin. Theory Ser. A 75(2), 353–357 (1996)
2. Chalcraft, A.: Perfect square packings. J. Combin. Theory Ser. A 92, 158–172 (2000)
3. Grzegorek, P., Januszewski, J.: A note on three Moser’s problems and two Paulhus’ lemmas. J. Combin. Theory Ser. A 162(2), 222–230 (2019)
4. Januszewski, J.: Optimal translative packing of homothetic triangles. Stud. Sci. Math. Hung. 46(2), 185–203 (2009)
5. Januszewski, J., Zielonka, Ł: A note on perfect packing of squares and cubes. Acta Math. Hung. 163, 530–537 (2021)