The importance of prenol lipids in mitigating salt stress in the leaves of Tilia × euchlora trees

Author:

Baczewska-Dąbrowska Aneta H.,Dmuchowski Wojciech,Gozdowski Dariusz,Gworek Barbara,Jozwiak Adam,Swiezewska Ewa,Dąbrowski Piotr,Suwara Irena

Abstract

Abstract Key message Plants use multiple mechanisms to deal with salt stress. Salt stress increases the content of polyprenols inTilia’s leaves, which may mitigate stress. Abstract De-icing salt has been used on streets and pavements in most northern countries since the 1960s. Salt stress limits all vital functions of trees. Tilia × euchlora is planted in many cities given its unique decorative qualities. The aim of this study was to determine the tree strategy to mitigate salt stress due to the synthesis of polyprenols in leaves. Many years of observations have demonstrated that trees of the same species growing in the same street conditions may have extremely different health statuses. The study consisted of two experiments: a field experiment with urban street trees growing in saline soils and a controlled pot experiment with young trees exposed to increasing doses of salt. The differences between the young trees from the pot experiment and older trees from the field experiment were expressed in their ability to synthesize polyprenols. In urban conditions, the tree leaves with less damage contained significantly more polyprenols than did those with more damage. The salt stress mitigation strategy may be related to the ability to synthesize polyprenols. This ability can be acquired through adaptation by older trees. The mechanism involves limiting the transport of Cl and Na+ to leaves. In the pot experiment, the young trees did not exhibit this ability.

Funder

narodowe centrum nauki

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Ecology,Physiology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3