Impact of Cold Stress on Leaf Structure, Photosynthesis, and Metabolites in Camellia weiningensis and C. oleifera Seedlings

Author:

Xu Hongyun,Huang Chengling,Jiang Xian,Zhu Jing,Gao Xiaoye,Yu Cun

Abstract

Camellia weiningensis Y. K. Li. sp. nov. (CW) is an endemic oil-tea species in Guizhou province, distributed in the alpine karst area, which exhibits cold resistance and better economic characters than C. oleifera (CO). The mechanism of cold response in CW seedlings has not been studied in depth. Herein, we performed anatomical, physiological, and metabolic analyses to assess the impact of cold stress on leaf structure, photosynthesis, and metabolites in CW and CO seedlings. Anatomical analysis of leaves showed CW seedlings had greater leaf and palisade thicknesses, tissue structure tightness, and palisade-spongy tissue ratio to enhance chilling stress (4 °C) tolerance, but freezing stress (−4 °C) caused loosening of the leaf tissue structure in both CW and CO seedlings. Photosynthetic analysis showed a reduction in the chlorophyll (Chl) fluorescence (Fv/Fm) and photosynthetic parameters under freezing stress in both CW and CO seedlings. Cold stress increased the abscisic acid (ABA) contents in both the Camellia species, and CW exhibited the highest ABA content under −4 °C treatment. Additionally, the indole-3-acetic acid (IAA) content was also increased in CW in response to cold stress. An obviously distinct metabolite composition was observed for CW and CO under different temperatures, and significantly changed metabolites (SCMs) were enriched under freezing stress. Prenol lipids, organooxygen compounds, and fatty acyls were the main metabolites in the two Camellia species in response to cold stress. The top key SCMs, such as medicoside G, cynarasaponin F, yuccoside C, and methionyl-proline were downregulated under freezing stress in both CW and CO. The contents of some key metabolites associated with sugar metabolism, such as UDP-glucose, UDP-D-apiose, and fructose 6-phosphate, were higher in CW than in CO, which may contribute to enhancing the cold resistance in CW. Our findings are helpful in explaining how CW adapt to alpine karst cold environments, and will provide a reference for cold tolerance improvement and application of stress-resistant breeding of Camellia in alpine and cold areas.

Funder

Guizhou Minzu University

Guizhou Education

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Reference56 articles.

1. New perspective for evaluating the main Camellia oleifera cultivars in China

2. Camellia oil authentication: A comparative analysis and recent analytical techniques developed for its assessment. A review

3. Transcriptomic Analyses of Camellia oleifera ‘Huaxin’ Leaf Reveal Candidate Genes Related to Long-Term Cold Stress

4. Resource Survey on Camellia weiningensis. Y. K. Li. sP. nov in Weining County, Guizhou Province and Utilization Status;Geng;J. Anhui. Agric. Sci.,2019

5. The effect of different low temperature treatment on the anatomical structure of oil palm leaves;Cao;Chin. J. Trop Crop.,2014

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3