Evaluating growth and intrinsic water-use efficiency in hardwood and conifer mixed plantations

Author:

Gentilesca TizianaORCID,Battipaglia Giovanna,Borghetti Marco,Colangelo Michele,Altieri Simona,Ferrara Agostino M. S.,Lapolla Antonio,Rita Angelo,Ripullone Francesco

Abstract

Abstract Key message Juglans, Fraxinus, Quercus and Pinus species seem to better maximize the carbon–water ratio providing useful indications on species selection for forestry plantations in areas with increasing drought risk. Abstract Maximizing carbon sequestration for a given water budget is extremely important in the contest of climate change in the Mediterranean region, which is characterized by increasing temperatures and rising water stress. This issue is fundamental for plantation stands, where limited water availability during the growing season reduces CO2 assimilation and, consequently, tree growth. In this study, the main objective was to investigate the performances in terms of carbon–water balance of conifer (Pinus halepensis and Cupressus sempervirens) and hardwood (Quercus robur, Juglans regia, Fraxinus excelsior and Populus spp.) mixed plantations. To this aim, we used carbon isotope signatures to evaluate the intrinsic water-use efficiency (iWUE) and the species-specific relationship between basal area increments (BAI) and iWUE. At the species level, the highest iWUE values corresponded to the lowest carbon accumulation in terms of BAI, for water-saving species such as Cupressus. Conversely, Populus had the lowest iWUE and the highest BAI accumulation. Juglans, Fraxinus, and Pinus showed the most balanced ratio between BAI and iWUE. Overall, no clear correlation of iWUE and BAI was evident within all species, except for Populus and Cupressus. Considering projected aridification and increased temperatures that will negatively impact the growth, our data suggest that Pinus, for conifers, and Quercus, Juglans, Fraxinus for hardwood species should be preferred when choosing species for forestry plantation, as they performed better in terms of BAI and iWUE ratio.

Funder

MIUR

Università degli Studi della Basilicata

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Ecology,Physiology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3