Carbon and water vapor exchanges coupling for different irrigated and rainfed conditions on Andean potato agroecosystems

Author:

Martínez-Maldonado Fabio ErnestoORCID,Castaño-Marín Angela MaríaORCID,Góez-Vinasco Gerardo AntonioORCID,Marin Fabio RicardoORCID

Abstract

AbstractThe fundamental exchange of water for carbon lays the groundwork for understanding the interplay between carbon and water cycles in terrestrial ecosystems, providing valuable insights into global water and carbon balances and vegetation growth. Inherent water use efficiency (IWUE) was used as a study framework of the diurnal patterns and degree of coupling of carbon and water exchange to investigate the net ecosystem carbon exchange (NEE) responses of three water regime potato cropping systems [full-irrigation (FI), deficit-irrigation (DI), and rainfed (RF)] in Cundinamarca, Colombia. The eddy covariance method was used to determine CO2 and water fluxes, surface resistances, and the omega decoupling factor (Ω). Additionally, leaf area index (LAI), and specific leaf area (SLA) were assessed to determine the canopy influence on carbon and water exchange. The highest carbon sink activity (NEE = -311.96 ± 12.82 g C m−2) at FI, is primarily attributed to a larger canopy with high autotrophic activity and low internal resistance. This supported a highly coupled and synchronized exchange between evapotranspiration (ET) and gross primary production (GPP), as reflected in the highest IWUE (4.7 mg C kPa s−1 kg−1 H2O). In contrast, the lower sink capacity at DI (NEE =  − 17.3 ± 4.6 g C m−2) and the net carbon source activity from RF (NEE = 187.21 ± 3.84 g C m−2) were related to a smaller leaf area available for water and carbon exchange, resulting in lower IWUE (2.3 and 1.01 mg C kPa s−1 kg−1 H2O, respectively) and a decoupled and desynchronized gas exchange caused by unbalanced restrictions on ET and GPP fluxes. These results provide new information on carbon–water interactions in potatoes and improve the understanding of carbon sequestration and drought effects on potato sink activity.

Funder

Corporación colombiana de investigación agropecuaria

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3