Simulated fire injury: effects of trunk girdling and partial defoliation on reproductive development of apple trees (Malus domestica)

Author:

Rossouw Gerhard C.ORCID,Idowu Oluyoye,Gregson Aphrika,Holzapfel Bruno P.

Abstract

AbstractFire damage can significantly impact fruit productivity in orchards. However, the effects of nonlethal fire injuries on the reproductive development of apple trees remain poorly understood. To investigate these effects, we implemented three treatments: trunk girdling to simulate fire injury to xylem, defoliation of a third of the canopy (simulated crown fire injury), and a combined treatment (simulated surface fire injury), alongside a control. The experiment was conducted during the 2021–22 growing season using a randomised block design with four biological replicate plots. Girdling was less effective than crown and surface fire treatments in influencing fruit composition during the current growing season, and flowering and fruiting in the following season. The crown and surface fire treatments induced localised detrimental effects on fruit sugar and titratable acidity while stimulating peel blush. Additionally, these treatments led to reduced starch reserves by harvest, which likely disrupted subsequent flowering and crop load near the previously defoliated sections of the canopy. When surface fires damage leaves near the base of the canopy in addition to the trunk, fruit production in the lower part of the canopy is more likely to be compromised in the following season. Crown fires, which cause leaf loss near the apex of the canopy, appear to be particularly detrimental to tree productivity, as the top defoliation treatment impaired carbohydrate reserves in shoot terminals and roots. In conclusion, fire-induced loss of leaf area during fruit growth alters fruit composition in the current growing season and may lead to lower yields in the subsequent season.

Funder

Hort Innovation

Charles Sturt University

State of Queensland acting through the Department of Agriculture and Fisheries

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3