Data-Related Ethics Issues in Technologies for Informal Professional Learning

Author:

Pammer-Schindler ViktoriaORCID,Rosé Carolyn

Abstract

AbstractProfessional and lifelong learning are a necessity for workers. This is true both for re-skilling from disappearing jobs, as well as for staying current within a professional domain. AI-enabled scaffolding and just-in-time and situated learning in the workplace offer a new frontier for future impact of AIED. The hallmark of this community’s work has been i) data-driven design of learning technology and ii) machine-learning enabled personalized interventions. In both cases, data are the foundation of AIED research and data-related ethics are thus central to AIED research. In this paper we formulate a vision how AIED research could address data-related ethics issues in informal and situated professional learning. The foundation of our vision is a secondary analysis of five research cases that offer insights related to data-driven adaptive technologies for informal professional learning. We describe the encountered data-related ethics issues. In our interpretation, we have developed three themes: Firstly, in informal and situated professional learning, relevant data about professional learning – to be used as a basis for learning analytics and reflection or as a basis for adaptive systems - is not only about learners. Instead, due to the situatedness of learning, relevant data is also about others (colleagues, customers, clients) and other objects from the learner’s context. Such data may be private, proprietary, or both. Secondly, manual tracking comes with high learner control over data. Thirdly, learning is not necessarily a shared goal in informal professional learning settings. From an ethics perspective, this is particularly problematic as much data that would be relevant for use within learning technologies hasn’t been collected for the purposes of learning. These three themes translate into challenges for AIED research that need to be addressed in order to successfully investigate and develop AIED technology for informal and situated professional learning. As an outlook of this paper, we connect these challenges to ongoing research directions within AIED – natural language processing, socio-technical design, and scenario-based data collection - that might be leveraged and aimed towards addressing data-related ethics challenges.

Funder

Österreichische Forschungsförderungsgesellschaft

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Education

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Intelligence in Education – Emerging Trends, Thematic Analysis & Application in Lifelong Learning;2023 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE);2023-12-04

2. Uncovering Blind Spots in Education Ethics: Insights from a Systematic Literature Review on Artificial Intelligence in Education;International Journal of Artificial Intelligence in Education;2023-12-01

3. Design of a future scenarios toolkit for an ethical implementation of artificial intelligence in education;Education and Information Technologies;2023-10-05

4. Framing Professional Learning Analytics as Reframing Oneself;IEEE Transactions on Learning Technologies;2022-10-01

5. Learning Analytics in the Corporate Sector: What Business Leaders Say?;IEEE Transactions on Learning Technologies;2022-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3