1. Adamson, D., Dyke, G., Jang, H., & Rosé, C. P. (2014). Towards an agile approach to adapting dynamic collaboration support to student needs. International Journal of Artificial Intelligence in Education, 24(1), 92–124.
2. Anderson, L. W., Krathwohl, D. R., Airasian, P., Cruikshank, K., Mayer, R., Pintrich, P., et al. (2001). A taxonomy for learning, teaching and assessing: A revision of Bloom’s taxonomy. In L. W. Anderson & D. R. Krathwohl (Eds.). New York: Longman Publishing.
3. Baker, R. S. J. D., & Ocumpaugh, J. (2014). Interaction-based affect detection in educational software. In R. A. Calvo, S. K. D'Mello, J. Gratch, & A. Kappas (Eds.), The Oxford handbook of affective computing (pp. 233–245). Oxford: Oxford University Press.
4. Baker, R. S. J. D., & Yacef, K. (2009). The state of educational data mining in 2009: A review and future visions. Journal of Educational Data Mining, 1(1), 3–17.
5. Bower, G. H. (1992). How might emotions affect learning? In S. Christianson (Ed.), The handbook of emotion and memory: Research and theory (pp. 3–32). Hillsdale: Lawrence Erlbaum Associates.